Mechatronic Modeling and Design with Applications in Robotics

Graphical Models

Block Diagram

Systems usually are composed of multiple subsystems:

More complex control block diagram (e.g., Feedback)

Summing Junction

Pickoff Point

Feedback Form: Eliminating a Feedback Loop

Moving a Summing Junction

\square

Moving a Pickoff Point

Signal Flow Graph

Definition

A system is represented by a line with an arrow showing the direction of signal flow through the system.

A signal-glow graph consists only branches and nodes:

Branches: represent systems
 Nodes: represent signals

Loop Gain:

The product of branch gains found by traversing a path that starts at a node and ends at the same node, following the direction of the signal flow, without passing through any other node more than once.

Forward-path Gain:

The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow.

Non-touching Loops:

Loops that do not have any nodes in common.

Non-Touching-Loop Gain:

The product of loop gains from non-touching loops taken two, three four, or more at a time

Example

Loop Gain:

Forward-path Gain:

Non-touching Loops:

Non-Touching-Loop Gain:

Mason's Rule

$$
G(s)=\frac{C(s)}{R(s)}=\frac{\sum_{k} T_{k} \Delta_{k}}{\Delta}
$$

$k \quad=$ number of forward paths
$T_{k} \quad=$ the kth forward-path gain
$\Delta \quad=1-\Sigma$ loop gains $+\Sigma$ non-touching loop gains
taken two at a time - Σ non-touching loop grains
taken three at a time $+\Sigma$ non-touching loop gains
taken four at a time ...
$\Delta_{k} \quad=\Delta-\Sigma$ loop gain terms in Δ that touch the kth forward path. In other words, Δ_{k} is formed by eliminating from Δ those loop gains that touch the k th forward path.

Example

Find the transfer function, $C(s) / R(s)$ for the signal-flow-graph:

$$
\begin{aligned}
G(s)= & \frac{T_{1} \Delta_{1}}{\Delta}=\frac{\left[G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s)\right]\left[1-G_{7}(s) H_{4}(s)\right]}{\Delta} \\
\Delta=1 & -\left[G_{2}(s) H_{1}(s)+G_{4}(s) H_{2}(s)+G_{7}(s) H_{4}(s)\right. \\
+ & \left.G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)\right] \\
& +\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s)+G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)\right. \\
+ & \left.G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right] \\
& -\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right]
\end{aligned}
$$

Consider the following state and output equations:

$$
\left\{\begin{array}{c}
\dot{x}_{1}=2 x_{1}-5 x_{2}+3 x_{3}+2 r \\
\dot{x}_{2}=-6 x_{1}-2 x_{2}+2 x_{3}+5 r \\
\dot{x}_{3}=x_{1}-3 x_{2}-4 x_{3}+7 r \\
y=-4 x_{1}+6 x_{2}+9 x_{3}
\end{array}\right.
$$

where r is the input, y is the output, x_{1}, x_{2} and x_{3} are the state variables, please draw its signal-flow graph.

The End!!

