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Block Diagram



Systems usually are composed of multiple subsystems:

More complex control block diagram (e.g., Feedback)
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Signal Flow Graph



A system is represented by a line with an arrow showing the direction of signal flow 
through the system.

A signal-glow graph consists only branches and nodes: 
Branches: represent systems
Nodes: represent signals
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Loop Gain:
The product of branch gains found by traversing a path that starts at a node and ends at 
the same node, following the direction of the signal flow, without passing through any 
other node more than once. 

Forward-path Gain:
The product of gains found by traversing a path from the input node to the output node of 
the signal-flow graph in the direction of signal flow. 

Non-touching Loops:
Loops that do not have any nodes in common.

Non-Touching-Loop Gain:
The product of loop gains from non-touching loops taken two, three four, or more at a 
time
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Loop Gain:

Forward-path Gain:

Non-touching Loops:

Non-Touching-Loop Gain:
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𝐺 𝑠 =
𝐶 𝑠
𝑅 𝑠

=
∑!𝑇!Δ!

Δ
𝑘 = number of forward paths
𝑇! = the kth forward-path gain
Δ = 1- Σ loop gains + Σ non-touching loop gains 

taken two at a time – Σ non-touching loop grains 
taken three at a time + Σ non-touching loop gains 
taken four at a time …  

Δ! = Δ – Σ loop gain terms in Δ that touch the kth forward path. In other words, 
Δ! is formed by eliminating from Δ those loop gains that touch the kth forward 
path.
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Find the transfer function, 𝐶(𝑠)/𝑅 𝑠 for the signal-flow-graph:
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Consider the following state and output equations: 

�̇�" = 2𝑥" − 5𝑥# + 3𝑥$ + 2𝑟
�̇�# = −6𝑥" − 2𝑥# + 2𝑥$ + 5𝑟
�̇�$ = 𝑥" − 3𝑥# − 4𝑥$ + 7𝑟
𝑦 = −4𝑥" + 6𝑥# + 9𝑥$

where r is the input, y is the output, x1, x2 and x3 are the state variables, please draw its 
signal-flow graph.
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The End!!


